
Graph Enhanced Contrastive Learning for Radiology Findings
Summarization

Jinpeng Hu♠♥∗, Zhuo Li♠♥∗, Zhihong Chen♠♥, Zhen Li♠♥
Xiang Wan♥♦†, Tsung-Hui Chang♠♥†

♠The Chinese University of Hong Kong (Shenzhen)
♥Shenzhen Research Institute of Big Data
♦Pazhou Lab, Guangzhou, 510330, China

♠{jinpenghu, zhuoli3, zhihongchen}@link.cuhk.edu.cn
♥wanxiang@sribd.cn ♠{lizhen, changtsunghui}@cuhk.edu.cn

Abstract

The impression section of a radiology report
summarizes the most prominent observation
from the findings section and is the most im-
portant section for radiologists to communi-
cate to physicians. Summarizing findings is
time-consuming and can be prone to error for
inexperienced radiologists, and thus automatic
impression generation has attracted substantial
attention. With the encoder-decoder frame-
work, most previous studies explore incorpo-
rating extra knowledge (e.g., static pre-defined
clinical ontologies or extra background infor-
mation). Yet, they encode such knowledge
by a separate encoder to treat it as an ex-
tra input to their models, which is limited in
leveraging their relations with the original find-
ings. To address the limitation, we propose
a unified framework for exploiting both extra
knowledge and the original findings in an in-
tegrated way so that the critical information
(i.e., key words and their relations) can be ex-
tracted in an appropriate way to facilitate im-
pression generation. In detail, for each input
findings, it is encoded by a text encoder, and
a graph is constructed through its entities and
dependency tree. Then, a graph encoder (e.g.,
graph neural networks (GNNs)) is adopted to
model relation information in the constructed
graph. Finally, to emphasize the key words
in the findings, contrastive learning is intro-
duced to map positive samples (constructed by
masking non-key words) closer and push apart
negative ones (constructed by masking key
words). The experimental results on OpenI
and MIMIC-CXR confirm the effectiveness of
our proposed method.1

1 Introduction

Radiology reports document critical observation in
a radiology study and play a vital role in commu-

*Equal Contribution.
†Corresponding author.
1Our code is released at https://github.com/

jinpeng01/AIG_CL.

Figure 1: An example of the findings and correspond-
ing impression, where the relation information, as well
as positive and negative examples, are also shown in
the figure. Note that4 represents the removed word.

nication between radiologists and physicians. A
radiology report usually consists of a findings sec-
tion describing the details of medical observation
and an impression section summarizing the most
prominent observation. The impression is the most
critical part of a radiology report, but the process of
summarizing findings is normally time-consuming
and could be prone to errors for inexperienced radi-
ologists. Therefore, automatic impression genera-
tion (AIG) has drawn substantial attention in recent
years, and there are many methods proposed in this
area (Zhang et al., 2018; Gharebagh et al., 2020;
MacAvaney et al., 2019; Shieh et al., 2019).

Most existing studies focus on incorporating
extra knowledge on the general encoder-decoder
framework. For example, Zhang et al. (2018) uti-
lized the background section in the radiology report
through a separate encoder and then used it to guide
the decoding process to enhance impression gen-
eration. Similarly, MacAvaney et al. (2019) and
Gharebagh et al. (2020) proposed to extract the
ontology information from findings and used an
encoder to encode such information to promote the
decoding process. Although these approaches have
brought significant improvements, they only lever-
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Figure 2: The overall architecture of our proposed method with graph and contrastive learning. An example input
and output at t−1 and t step are shown in the figure, where the top is the backbone sequence-to-sequence paradigm
with a graph to store relation information between critical words and the bottom is the contrastive learning module
with specific positive and negative examples. m refer to a mask vector.

age extra knowledge and findings separately (i.e.,
through an extra encoder). Thus, their performance
relies heavily on the quality of extra knowledge,
and the further relationships between extra knowl-
edge and findings are not explored. In this paper,
we propose a unified framework to exploit both
findings and extra knowledge in an integrated way
so that the critical information (i.e., key words and
their relations in our paper) can be leveraged in
an appropriate way. In detail, for each input find-
ings, we construct a word graph through the auto-
matically extracted entities and dependency tree,
with its embeddings, which are from a text encoder.
Then, we model the relation information among key
words through a graph encoder (e.g., graph neural
networks (GNNs)). Finally, contrastive learning
is introduced to emphasize key words in findings
to map positive samples (constructed by masking
non-key words) closer and push apart negative ones
(constructed by masking key words), as shown in
Figure 1. In such a way, key words and their rela-
tions are leveraged in an integrated way through the
above two modules (i.e., contrastive learning and
the graph encoder) to promote AIG. Experimental
results on two datasets (i.e., OpenI and MIMIC-
CXR) show that our proposed approach achieves
state-of-the-art results.

2 Method

We follow the standard sequence-to-sequence
paradigm for AIG. First, we utilize WordPiece (Wu

et al., 2016) to tokenize original findings and obtain
the source input sequence X = x1, x2, · · · , xN ,
where N is the number of tokens in X . The goal is
to find a sequence Y = {y1, ...yi, ..., yL} that sum-
marizes the most critical observations in findings,
where L is the length of impression and yi ∈ V
are the generated tokens and V is the vocabulary
of all possible tokens. The generation process can
be formalized as:

p(Y | X ) =
L∏
t=1

p (yt | y1, . . . , yt−1,X ) (1)

The model is then trained to maximize the negative
conditional log-likelihood of Y given the X :

θ∗ = argmax
θ

L∑
t=1

log p (yt | y1, ..., yt−1,X , A; θ)

(2)
where θ is the parameters of the model, and A rep-
resents edges in the relation graph. An overview of
our proposed method is presented in Figure 2. Our
model contains three main components, i.e., the
graph enhanced encoder, the contrastive learning
module, and the decoder. The details are described
in the following sub-sections.

2.1 Relation Graph

The impression usually describes critical abnor-
malities with more concise descriptions summa-
rized from the corresponding findings and some-
times uses key phrases to express observations. For
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example, a sentence in findings texts “There is
a left pleural effusion which is small in size.”, is
simplified as a key phrase “Small left pleural ef-
fusion” in the impression, where the relation be-
tween “small” and “effusion” is vital for describ-
ing the corresponding observation. Thus, the rela-
tion information in findings plays an essential role
in accurate key phrase generation. Four types of
medical entities, anatomy, observation, anatomy
modifier, and observation modifier, are recognized
from findings, which compose a majority of im-
portant medical knowledge in impression (Hassan-
pour and Langlotz, 2016). With WordPiece to-
kenization, we represent each entity by frequent
subwords and connect any two subwords if they
are adjacent in the same entity to enhance internal
relations for keeping the entity complete. For ex-
ample, the entity “opacity” is represented as “op
##acity” and then these two subwords connect to
each other with both from “op” to “##acity” and
from “##acity” to “op”. Besides, we need to con-
sider the semantic relation between entities and
other words, such as words used to describe the
location and degree of symptoms, which is neces-
sary for accurately recording abnormalities. For
example, in a text span “bilateral small pleural
effusions”, relations in <“bilateral”,“effusions”>,
<“small”,“effusions”> are also important to de-
scribe the observation “effusions” and they can be
extracted from the dependency tree. Therefore, we
construct a dependency tree to extract the semantic
relations between entities and other words, with
the direction from their head words to themselves.
We also employ the WordPiece to split these words
as subwords and connect all the source subwords
to the corresponding target words with the original
direction. The constructed subword graph is then
used to extract relation information, with edges
represented by A.

2.2 Graph Enhanced Encoder

In recent years, pre-trained models have domi-
nated not only general summarization tasks but
also multi-modal tasks because of their strong abil-
ity in feature representation (Wu et al., 2021; Zhang
et al., 2020a; Yuan et al., 2021, 2022). Thus, in our
method, we utilize the pre-trained model BioBERT
(Lee et al., 2020) trained on a large biomedical cor-
pus as our text encoder. The hidden state hi for
each token xi is generated by the text encoder

[h1,h2, · · · ,hn] = fte(x1, x2, · · · , xn) (3)

Algorithm 1: Generation of Examples
Input: s: graph enhanced token representation

A: edges in relation graph
Output: sp Positive example

sn Negative example
Initialization: sp ← s, sn ← s

m = [1e− 6] ∈ Rd

1: N , d = size(s)
2: Vkey = Extract_subword_index(A)
3: for j = 0 to N do
4: if j in Vkey then
5: snj ←m

6: else:
7: spj ←m

8: end if
9: end for

Herein, fte(·) refers to the pre-trained Transformer-
based text encoder (i.e., BioBERT (Lee et al.,
2020)), and hi is a d-dimensional feature vector for
representing corresponding tokens xi. Since GNNs
are well known for extracting features from graph
structure and have been shown promising in text
generation tasks (Jia et al., 2020; Hu et al., 2021),
we employ a GNN-based encoder to capture rela-
tion information from the corresponding subword
graph. This process can be formulated as:

z = fge(h, A), (4)

where fge(·) is the graph encoder, and z is the
feature vector extracted from the graph. Next, to
incorporate relation information into token repre-
sentation, we concatenate z and h and utilize a fully
connected layer to reduce it to the same dimensions
as z and h:

s = MLP([h1⊕ z1,h2⊕ z2, · · · ,hn⊕ zn]), (5)

where s is the final token representation.

2.3 Contrastive Learning

Only relying on a GNN encoder to capture rela-
tion information still lacks the capability to fully
grasp important word information from findings
since the graph is pre-defined before training or
testing. Recently, contrastive learning has shown
strong power in learning and distinguishing signifi-
cant knowledge by concentrating positive samples
and contrasting with negative samples, and brought
significant improvements in many tasks, such as
improving the faithfulness of summarization and
discriminating vital information to enhance repre-

pengyang
高亮文本

pengyang
高亮文本



sentation (Cao and Wang, 2021; Zeng et al., 2021).
We expect our model to be more sensitive to critical
words contained in findings. For this purpose, we
apply a contrastive learning module to concentrate
positive pairs and push negative ones apart, which
aims to help the model differentiate essential in-
formation from secondary information. We regard
tokens with edges in the relation graph as critical
tokens since they contain important information
for describing key observations, as discussed in
2.1. To construct a positive example, we mask each
non-key token representation in s as the constant
vectors m ∈ Rd, with all elements 1e− 6, so that
this instance can consolidate the critical informa-
tion and remove unimportant words. Meanwhile,
we utilize a similar way to mask important token
representations in s as m to obtain a negative ex-
ample sn. The details of generating positive and
negative examples are shown in Algorithm 1. Note
that in our model, we do not consider the other
instances in the same mini-batch as the negative
examples, which is different from many existing
approaches (Kim et al., 2021; Giorgi et al., 2020)
since we aim to identify the critical content in X
instead of expanding differences between various
findings in one mini-batch. In addition, radiology
reports are not as diverse as ordinary texts, and they
are mainly composed of fixed medical terms and
some attributive words, where the former is used to
record critical information and the latter is to keep
sentences fluent and grammatically correct.

Afterward, we employ a randomly initialized
Transformer-based encoder to model s, sp, sn, re-
spectively, which can be formulated as:

b = fce(s), (6)

bp = fce(s
p), (7)

bn = fce(s
n), (8)

where fce(·) represents the contrastive encoder.
b, bp and bn are intermediate states extracted
from the encoder, which are also d-dimensional
vectors. Then, we calculate cosine similarity
sim(b1,b2) =

b>
1 b2

‖b1‖·‖b2‖ for positive and nega-
tive pairs, denoted as sim(b,bp) and sim(b,bn).
We follow Robinson et al. (2020) to formulate the
training objective of contrastive module:

lcon = − log
esim(bi,b

p)/τ∑N
j=1

(
esim(bi,bp)/τ + esim(bi,bn)/τ

) ,
(9)

where τ is a temperature hyperparameter, which is

DATA TYPE TRAIN DEV TEST

OPENI

REPORT # 2400 292 576
AVG. WF 37.89 37.77 37.98
AVG. SF 5.75 5.68 5.77
AVG. WI 10.43 11.22 10.61
AVG. SI 2.86 2.94 2.82

MIMIC
-CXR

REPORT # 122,014 957 1,606
AVG. WF 55.78 56.57 70.67
AVG. SF 6.50 6.51 7.28
AVG. WI 16.98 17.18 21.71
AVG. SI 3.02 3.04 3.49

Table 1: The statistics of the two benchmark datasets
with random split for OPENI and official split for
MIMIC-CXR, including the numbers of report, the av-
eraged sentence-based length (AVG. SF, AVG. SI), the
averaged word-based length (AVG. WF, AVG. WI) of
both IMPRESSION and FINDINGS.

set to 1 in this paper.

2.4 Decoder

The decoder in our model is built upon a standard
Transformer (Vaswani et al., 2017), where the rep-
resentation s is functionalized as the input of the
decoder so as to improve the generation process.
In detail, s is sent to the decoder at each decoding
step, jointly with the generated tokens from pre-
vious steps, and thus the current output yt can be
computed by

yt = fe(s1, s2, · · · , sn, y1, · · · , yt−1), (10)

where fe(·) refers to the Transformer-based de-
coder and this process is repeated until the com-
plete impression is obtained.

Besides, to effectively incorporate the critical
word information into the decoding process, we
sum the losses from the impression generation and
contrastive objectives as

L = lge + λlcon, (11)

where lge is the basic sequence-to-sequence loss,
and λ is the weight to control the contrastive loss.

3 Experimental Setting

3.1 Dataset

Our experiments are conducted on two following
datasets: OPENI (Demner-Fushman et al., 2016)
and MIMIC-CXR (Johnson et al., 2019) respec-
tively, where the former contains 3268 reports col-
lected by Indiana University and the latter is a
larger dataset containing 124577 reports. Note that
the number of reports we introduced is counted
after pre-processing. We follow (Hu et al., 2021;
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DATA MODEL
ROUGE FC

R-1 R-2 R-L P R F-1

OPENI

BASE 62.74 53.32 62.86 - - -
BASE+CL 63.53 54.58 63.13 - - -
BASE+GRAPH 63.29 54.12 63.03 - - -
BASE+GRAPH+CL 64.97 55.59 64.45 - - -

MIMIC-CXR

BASE 47.92 32.43 45.83 58.05 50.90 53.01
BASE+CL 48.15 33.25 46.24 58.34 51.58 53.70
BASE+GRAPH 48.29 33.30 46.36 57.80 51.70 53.50
BASE+GRAPH+CL 49.13 33.76 47.12 58.85 52.33 54.52

Table 2: Comparisons of baselines and our method on OPENI and MIMIC-CXR datasets. R-1, R-2 and R-L refer
to ROUGE-1, ROUGE-2 and ROUGE-L, respectively. P, R and F-1 represent precision, recall, and F1 score.

Zhang et al., 2018) to filter the reports by deleting
the reports in the following cases: (1) no findings or
no impression sections; (2) the findings have fewer
than ten words, or the impression has fewer than
two words. For OPENI, we follow (Hu et al., 2021)
to randomly divide it into train/validation/test set
by 2400:292:576 in our experiments. For MIMIC-
CXR, we apply two types of splits, including an
official split and a random split with a ratio of 8:1:1
similar to (Gharebagh et al., 2020). We report the
statistics of these two datasets in Table 1.

3.2 Baseline and Evaluation Metrics

To explore the performance of our method, we use
the following ones as our main baselines:
• BASE (Liu and Lapata, 2019): this is a backbone

sequence-to-sequence model, i.e., a pre-trained
encoder and a randomly initialized Transformer-
based decoder.

• BASE+GRAPH and BASE+CL: these have the
same architecture as BASE, where the former
incorporates an extra graph encoder to enhance
relation information, and the latter introduces a
contrastive learning module to help the model
distinguish critical words.

Besides, we also compare our method with those
existing studies, including both extractive sum-
marization methods, e.g., LEXRANK (Erkan and
Radev, 2004), TRANSFORMEREXT (Liu and La-
pata, 2019), and the ones proposed for abstractive
models. e.g., TRANSFORMERABS (Liu and La-
pata, 2019), ONTOLOGYABS (Gharebagh et al.,
2020), WGSUM (TRANS+GAT), and WGSUM
(LSTM+GAT) (Hu et al., 2021).

Actually, factual consistency (FC) is critical in
radiology report generation (Liu et al., 2019; Chen
et al., 2020). Following Zhang et al. (2020c); Hu
et al. (2021), we evaluate our model and three base-
lines by two types of metrics: summarization and

FC metrics. For summarization metrics, we report
F1 scores of ROUGE-1 (R-1), ROUGE-2 (R-2),
and ROUGE-L (R-L). Besides, for FC metrics, we
utilize CheXbert (Smit et al., 2020)2 to detect 14
observations related to diseases from reference im-
pressions and generated impressions and then cal-
culate the precision, recall, and F1 score between
these two identified results.

3.3 Implementation Details
In our experiments, we utilize biobert-base-cased-
v1.13 as our text encoder and follow its default
model settings: we use 12 layers of self-attention
with 768-dimensional embeddings. Besides, we
employ stanza (Zhang et al., 2020d) to extract med-
ical entities and the dependence tree, which is used
to construct the graph and generate positive and
negative examples. Our method is implemented
based on the code of BertSum (Liu and Lapata,
2019)4. In addition, we use a 2-layer graph atten-
tion networks (GAT) (Veličković et al., 2017)5 with
the hidden size of 768 as our graph encoder and
a 6-layer Transformer with 768 hidden sizes and
2048 feed-forward filter sizes for the contrastive
encoder. The decoder is also a 6-layer Transformer
with 768 dimensions, 8 attention heads, and 2048
feed-forward filter sizes. Note that λ is set 1 in
all experiments, and more detailed hyperparame-
ters are reported in A.1. During the training, we
use Adam (Kingma and Ba, 2014) to optimize the
trainable parameters in our model.

2FC is only applied to MIMIC-CXR since the CheXbert
is designed for MIMIC-CXR. We obtain it from https://
github.com/stanfordmlgroup/CheXbert

3We obtain BioBERT from https://github.com/
dmis-lab/biobert

4We obtain the code of BertSum from https://
github.com/nlpyang/PreSumm

5Since previous study (Hu et al., 2021) has shown that
GAT (Veličković et al., 2017) is more effective in impression
generation, we select GAT as our graph encoder.

https://github.com/stanfordmlgroup/CheXbert
https://github.com/stanfordmlgroup/CheXbert
https://github.com/dmis-lab/biobert
https://github.com/dmis-lab/biobert
https://github.com/nlpyang/PreSumm
https://github.com/nlpyang/PreSumm


MODEL

OPENI MIMIC-CXR

RANDOM SPLIT OFFICIAL SPLIT RANDOM SPLIT
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

LEXRANK (Erkan and Radev, 2004) 14.63 4.42 14.06 18.11 7.47 16.87 - - -
TRANSEXT (Liu and Lapata, 2019) 15.58 5.28 14.42 31.00 16.55 27.49 - - -
PGN (LSTM) (See et al., 2017) 63.71 54.23 63.38 46.41 32.33 44.76 - - -
TRANSABS (Liu and Lapata, 2019) 59.66 49.41 59.18 47.16 32.31 45.47 - - -
ONTOLOGYABS† (Gharebagh et al., 2020) - - - - - - 53.57 40.78 51.81
WGSUM (LSTM)† (Hu et al., 2021) 64.32 55.48 63.97 47.48 33.03 45.43 54.97 43.64 53.81
WGSUM (TRANS)† (Hu et al., 2021) 61.63 50.98 61.73 48.37 33.34 46.68 56.38 44.75 55.32

OURS 64.97 55.59 64.45 49.13 33.76 47.12 57.38 45.52 56.13

Table 3: Comparisons of our proposed models with previous study on the OPENI and MIMIC-CXR with respect
to ROUGE metric. † refers to that the results is directly cited from the original paper.

4 Results and Analyses

4.1 Effect of Graph and Contrastive learning

To explore the effectiveness of our proposed
method, we conduct experiments on two bench-
mark datasets, with the results reported in Table 2,
where BASE+GRAPH+CL represents our complete
model. We can obtain several observations from the
results. First, both BASE+GRAPH and BASE+CL
achieve better results than BASE with respect to
R-1, R-2, and R-L, which indicates that graph and
contrastive learning can respectively promote im-
pression generation. Second, BASE+GRAPH+CL
outperforms all baselines with significant improve-
ment on two datasets, confirming the effectiveness
of our proposed method in combining graph and
contrastive learning. This might be because graphs
and contrastive learning can provide valuable infor-
mation from different aspects, the former mainly
record relation information, and the latter brings
critical words knowledge, so that an elaborate com-
bination of them can bring more improvements.
Third, when comparing these two datasets, the per-
formance gains from our full model over three base-
lines on OpenI are more prominent than that on
MIMIC-CXR. This is perhaps because compared
to MIMIC-CXR, OpenI dataset is relatively smaller
and has a shorter averaged word-based length, such
that it is easier for the graph to record relation and
more accessible for contrastive learning to recog-
nize key words by comparing positive and negative
examples. Fourth, we can find a similar trend on
the FC metric on the MIMIC-CXR dataset, where
a higher F1 score means that our complete model
can generate more accurate impressions thanks to
its more substantial power in key words discrimi-
nation and relationship information extraction.

4.2 Comparison with Previous Studies

In this subsection, we further compare our mod-
els with existing models on the aforementioned
datasets, and the results are reported in Table 3.
There are several observations. First, the com-
parison between our model and ONTOLOGYABS
shows the effectiveness of our design in this task,
where our model achieves better performance,
though both of them enhance impression gener-
ation by incorporating crucial medical information.
This might be because by comparing positive and
negative examples for each findings, our model
is more sensitive to critical information and more
intelligent in distinguishing between essential in-
formation and secondary information, contributing
to more accurate and valuable information embed-
ded in the model. Second, we can observe that our
model outperforms all existing models in terms
of R-1, R-2, and R-L. On the one hand, effec-
tively combining contrastive learning and graph
into the sequence to sequence model is a better
solution to improve feature extraction and thus pro-
mote the decoding process robustly. On the other
hand, the pre-trained model (i.e., BioBERT) used
in our model is a more powerful feature extrac-
tor in modeling biomedical text than those exist-
ing studies, e.g., TRANSFORMERABS, ONTOL-
OGYABS, and PGN, which utilize randomly ini-
tialized encoders. Third, when compared to those
complicated models, e.g., WGSUM utilize stanza
to extract entities and construct two extra graph en-
coders to extract features from a word graph, which
are then regarded as background information and
dynamic guiding information to enhance the decod-
ing process for improving impression generation,
our model can achieve better performance through
a somewhat more straightforward method.
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Figure 3: The results of human evaluation, where for-
ward and backslash represent that BASE+GRAPH+CL
versus the reference and BASE, respectively. Yellow,
green and blue represent that our model loses, equal to
competitors and wins.

4.3 Human Evaluation

We further conduct a human evaluation to under-
stand the quality of the generated impression better
and alleviate the limitation of the ROUGE metric.
One hundred generated impressions on MIMIC-
CXR from BASE and BASE+GRAPH+CL, along
with their corresponding reference impressions, are
randomly selected for expert evaluation (Ghare-
bagh et al., 2020). Besides, we follow Hu et al.
(2021) to utilize four metrics: Key, Readability,
Accuracy, and Completeness, respectively. We in-
vite three medical experts to score these generated
impressions based on these four metrics, with the
results shown in Figure 3. On the one hand, com-
pared to BASE, we can find that our model out-
performs it on all four metrics, where 16%, 25%,
18%, and 8% of impressions from our model obtain
higher quality than BASE. On the other hand, com-
paring our model against reference impressions,
our model obtains close results on key, accuracy,
and completeness, with 86%, 78%, and 92% of our
model outputs being at least as good as radiologists,
while our model is less preferred for readability
with a 10% gap. The main reason might be that
many words removed in positive examples are used
to keep sequence fluently, and our model tends to
identify them as secondary information, leading
that our model obtains relatively worse results on
the readability metric.

4.4 Analyses

We conduct further analyses on Findings Length
and Case Study.
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Figure 4: R-1 score of generated impressions from
BASE and our model on the MIMIC-CXR test set,
where OURS represent the BASE+GRAPH+CL.

Findings Length To test the effectiveness of the
word-based length of findings, we categorize the
findings on the MIMIC-CXR test set into seven
groups and present the R-1 score for each group
in Figure 4. We have the following observations.
First, as the findings length becomes long, the per-
formance of BASE and our model tend to decrease,
except for the second group, i.e., [25, 45], since
short text are more accessible for the encoder to
capture valid features, which is consistent with pre-
vious studies (Dai et al., 2019). Second, our model
outperforms BASE in all the groups, further illus-
trating the effectiveness of our model regardless
of the findings length. Third, we can observe a
grey line with a downward trend from the incre-
mental chart in the upper right corner of Figure 4,
indicating that our model (i.e., BASE+GRAPH+CL)
tends to gain better improvements over BASE on
shorter findings than that on longer ones. This is
because longer findings usually contain relatively
more secondary information such that it is more
challenging for contrastive learning to distinguish
critical knowledge.

Case study To further demonstrate how our ap-
proach with graph and contrastive learning helps
the generation of findings, we perform qualitative
analysis on two cases, and the results are shown
in Figure 5, where different colors on the texts in-
dicate different critical information. Compared to
BASE model, our model can generate more com-
plete impressions which cover almost all the crucial
abnormalities. In contrast, the BASE model fails to
identify all the key information, e.g., (“moderate
cardiomegaly” in the left example and “possible



Figure 5: Examples of the generated impressions from BASE and BASE+GRAPH+CL as well as reference impres-
sions. The yellow nodes in the graph indicate that these words are contained in entities.

small left pleural effusion” in the right case). Be-
sides, our model can generate more accurate im-
pressions with an appropriate word to represent
possibility and a better modifier to describe the
observation. On the one hand, in Figure 5, “sug-
gestive of” in the left example and “may” in the
right example imply a type of uncertainty, which
means that doctors wonder whether the abnormal
observation exists when writing findings, so that
the corresponding word (i.e., “likely”) is used to de-
scribe this sensitive information. On the other hand,
in the left case, according to the phrase “Frontal
and lateral” in its original findings, our model
can generate the synonym “bilateral” to depict the
symptom “pleural effusions” more specifically.

5 Related Work

Recently, NLP technology has broadly applied in
the medical domain, such as medical entity recog-
nition (Liu et al., 2021b; Zhao et al., 2019), radi-
ology report generation (Chen et al., 2021; Zhang
et al., 2020b; Liu et al., 2021a), AIG, etc. Im-
pression generation can be regarded as a type of
summarization task that has drawn substantial at-
tention in recent years, and there are many studies
for addressing general abstractive summarization
(See et al., 2017; Li et al., 2020; You et al., 2019;
Huang et al., 2020). You et al. (2019) designed
a novel focus-attention mechanism and saliency-
selection network, equipped in the encoder and
decoder to enhance summary generation. Li et al.
(2020) proposed an abstractive sentence summa-
rization method guided by the key words, which
utilized a dual-attention and a dual-copy mecha-
nism to integrate the semantics of both original
sequence and key words. Many methods propose

to introduce specific designs on the general summa-
rization model to address radiology impression gen-
eration (Zhang et al., 2018; Gharebagh et al., 2020;
MacAvaney et al., 2019; Hu et al., 2021; Abacha
et al., 2021). MacAvaney et al. (2019); Gharebagh
et al. (2020) extracted the salient clinical ontology
terms from findings and then incorporated them
into the summarizer through a separate encoder for
enhancing AIG. Hu et al. (2021) further introduced
pre-defined word graphs to record salient words as
well as their internal relation and then employed
two separate graph encoders to leverage graphs
for guiding the decoding process. Most of these
approaches exploit separate encoders to encode pre-
defined knowledge (e.g., ontology terms and word
graph), which are then utilized to enhance impres-
sion generation. However, they tend to over-rely
on the quality of pre-extracted ontologies and word
graphs and lack sensitivity to vital information of
findings themselves. Compared to these models,
our method offers an alternative solution to robustly
improve key information extraction with the help
of both graphs and contrastive learning.

6 Conclusion

In this paper, we propose to combine graphs and
contrastive learning to better incorporate valu-
able features for promoting impression generation.
Specifically, we utilize the graph encoder to extract
relation information from the graph, constructed
by medical entities and the dependence tree, for en-
hancing the representation from the pre-trained text
encoder. In addition, we employ contrastive learn-
ing to assist the model in distinguishing between
critical and secondary information, simultaneously
improving sensitivity to important word represen-



tation by comparing positive and negative exam-
ples. Furthermore, we conduct experiments on two
benchmark datasets, and the results illustrate the
effectiveness of our proposed method, where new
state-of-the-art results are achieved.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph Attention Networks. arXiv preprint
arXiv:1710.10903.

Wenhao Wu, Wei Li, Xinyan Xiao, Jiachen Liu,
Ziqiang Cao, Sujian Li, Hua Wu, and Haifeng Wang.
2021. BASS: Boosting Abstractive Summarization
with Unified Semantic Graph. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), Online. Association for Com-
putational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s Neural Machine
Translation System: Bridging the gap between Hu-
man and Machine Translation. arXiv preprint
arXiv:1609.08144.

Yongjian You, Weijia Jia, Tianyi Liu, and Wenmian
Yang. 2019. Improving Abstractive Document Sum-
marization with Salient Information Modeling. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2132–
2141.

Zhihao Yuan, Xu Yan, Yinghong Liao, Yao Guo, Guan-
bin Li, Zhen Li, and Shuguang Cui. 2022. X-
trans2cap: Cross-modal knowledge transfer using
transformer for 3d dense captioning. arXiv preprint
arXiv:2203.00843.

Zhihao Yuan, Xu Yan, Yinghong Liao, Ruimao Zhang,
Zhen Li, and Shuguang Cui. 2021. Instancere-
fer: Cooperative holistic understanding for visual
grounding on point clouds through instance multi-
level contextual referring. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 1791–1800.

Zhiyuan Zeng, Keqing He, Yuanmeng Yan, Zijun Liu,
Yanan Wu, Hong Xu, Huixing Jiang, and Weiran
Xu. 2021. Modeling Discriminative Representations
for Out-of-Domain Detection with Supervised Con-
trastive Learning. arXiv preprint arXiv:2105.14289.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and
Peter Liu. 2020a. Pegasus: Pre-training with Ex-



tracted Gap-Sentences for Abstractive Summariza-
tion. In International Conference on Machine
Learning, pages 11328–11339. PMLR.

Yixiao Zhang, Xiaosong Wang, Ziyue Xu, Qihang Yu,
Alan Yuille, and Daguang Xu. 2020b. When Radi-
ology Report Generation Meets Knowledge Graph.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 12910–12917.

Yuhao Zhang, Daisy Yi Ding, Tianpei Qian, Christo-
pher D Manning, and Curtis P Langlotz. 2018.
Learning to Summarize Radiology Findings. In Pro-
ceedings of the Ninth International Workshop on
Health Text Mining and Information Analysis, pages
204–213.

Yuhao Zhang, Derek Merck, Emily Tsai, Christopher D
Manning, and Curtis Langlotz. 2020c. Optimizing
the Factual Correctness of a Summary: A Study of
Summarizing Radiology Reports. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 5108–5120.

Yuhao Zhang, Yuhui Zhang, Peng Qi, Christopher D
Manning, and Curtis P Langlotz. 2020d. Biomed-
ical and Clinical English Model Packages in the
Stanza Python NLP Library. arXiv preprint
arXiv:2007.14640.

Sendong Zhao, Ting Liu, Sicheng Zhao, and Fei Wang.
2019. A Neural Multi-Task Learning Framework to
Jointly Model Medical Named Entity Recognition
and Normalization. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
817–824.



MODEL HYPER-PARAMETER VALUE

MIMIC-CXR
BATCH SIZE 32,64,128,300
LEARNING RATE 8e-5,2e-4, 1e-3, 0.05,
TRAINING STEPS 150000

OPENI
BATCH SIZE 32,64,128,300
LEARNING RATE 8e-5,5e-3, 1e-3, 0.05
TRAINING STEPS 20000

Table 4: The hyper-parameters that we have experi-
mented on the datasets. The bold values illustrates the
best configurations of different models.

A Appendix

A.1 Hyper-parameter Settings
Table 4 reports the hyper-parameters tested in tun-
ing our models on MIMIC-CXR and OPENI. For
each dataset, we try all combinations of the hyper-
parameters and use the one achieving the highest
R-1 for MIMIC-CXR and OPENI.


